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Abstract

Recently, tensor network (TN) becomes an attrac-
tive topic in the cross discipline of physics and ma-
chine learning. By factorizing a higher-order tensor
into small tensors, TNs are able to capture complex
multi-linear relations within the data. However, in
most of the applications, the structures of the TNs
are predefined, which greatly limit the flexibility
the models in diverse situations. In this paper, we
aim to bring the great power of Bayesian learning
into tensor ring (TR) decomposition, which is one
of the most popular TN structures. The advantages
of Bayesian TR model are two-folds: 1). Under
the full Bayesian framework, the estimator is prob-
abilistic and robust; 2). With the help of sparse pri-
ors, the proposed model can automatically prune
redundant factors and infer the underlying struc-
tures of the data. To approximate the posterior,
we establish two inference algorithms, including
Gibbs sampler and variational inference (VI). Also,
we conduct experiments on simulation data and im-
age inpainting tasks to show the effectiveness of the
proposed model.

1 Introduction

Tensors are natural representations for high dimensional ar-
rays. Contemporarily, many fields encounter tensor represen-
tations, as in neuroimaging [Zhou et al., 2013], video pro-
cessing [Lu et al., 2020], recommender systems [Romera-
Paredes et al., 2013], among many others. Despite the
great success of traditional tensor decomposition models like
Tucker decomposition and CP decomposition [Kolda and
Bader, 2009], tensor network (TN) [Cichocki et al., 2016]

becomes a powerful tool to tackle with higher-order tensors,
due to its powerful ability to capture complex correlations in
high dimensional data.

The basic idea of TNs is to factorize large tensors into
contraction forms of small core tensors. Among many so-
phisticated structures of TNs, tensor train (TT) [Oseledets,
2011] and tensor ring (TR) [Zhao et al., 2016] format are
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proved to be highly expressive in many machine learning ap-
plications, e.g., tensor completion [Wang et al., 2017], deep
learning [Novikov et al., 2015], Gaussian process [Izmailov
et al., 2018] and so on. The main difference between TT and
TR is that the first and last TT-rank must be 1, while there
is no such restriction in TR. Hence, TR can be regarded as
an extension of TT. While factorizing the large tensor data,
one critical issue that affects the performance of TNs is the
tensor rank, e.g., TT/TR-ranks. Most of the existence liter-
ature regards the tensor ranks as a prior knowledge. Never-
theless, in real applications, the underlying signals are un-
known and the tensor ranks should be carefully tuned us-
ing techniques like cross-validation. Moreover, factorizing an
order-D tensor requires to specify a TT/TR-rank of length D,
which is hard to search in the parameter space. To alleviate
the heavy computation, many works assume the TT/TR ranks
are the same in all the D modes, e.g., [Wang et al., 2017;
Yuan et al., 2018]. This compromise seems to constrain the
expressive ability of TNs, since the data structure may be dif-
ferent varying the modes.

One important application of tensor decomposition mod-
els is the low rank tensor completion problem. It is believed
that the underlying true signal has low rank and can be ap-
proximated by tensor decompositions. To get the low rank
estimators, there are two strategies. The first is to apply ten-
sor nuclear norm regularizations [Liu et al., 2012]. However,
such methods usually suffer from heavy computation. An-
other is to use tensor decompositions. Traditional algorithms
include CP-WOPT [Acar et al., 2011], Tucker-WOPT [Fil-
ipović and Jukić, 2015]. Recently, TR-based methods like
TR-ALS [Wang et al., 2017] and TR-WOPT [Yuan et al.,
2018] show their expressive power in completion problems.
However, all the model above need to specify a tensor rank in
advance. To alleviate the problem, one possible choice is rank
adaption techniques [Grasedyck and Krämer, 2019]. How-
ever, such methods did not consider the distributions of the
tensors and the noises, which may fail in low signal-to-noise
ratio cases.

In this paper, we aim to enhance the traditional TR decom-
position models with Bayesian techniques. To address the
rank selection issue, we construct full Bayesian version of
TR decomposition. By adopting shrinkage priors, the pro-
posed model can automatically shrink the redundant factors
to zeros and select the optimal TR ranks for better perfor-



mance. Sparse Bayesian learning has been widely studied in
factor analysis, e.g., ARD model [Tipping, 2001], sparse fac-
tor analysis [Bhattacharya and Dunson, 2011]. In the tensor
discipline, the Bayesian CP factorization (BCPF) [Zhao et al.,
2015] applied ARD prior on CP decomposition. To inference
the posterior, we develop efficient MCMC and VI algorithms.

The rest of the paper is summarized as follows. In Sec-
tion 2, we provide notations and some basic preliminaries. In
Section 3, we present the details of our model and develop
Gibbs sampler to inference the posterior. Section 4 gives our
algorithms. Experiment results are shown in Section 5.

2 Notations and Preliminaries

2.1 Notations

Tensors are denoted by bold calligraphic letters, e.g., X ∈
R

I1×I2×···×ID . Matrices are denoted by bold capital letters,
e.g., X ∈ R

I1×I2 . Vectors are denoted by bold letters,
e.g., x ∈ R

I . For indexing, we denote i = [i1, . . . , iD]
and i−d = [i1, . . . , id−1, id+1, . . . , iD]. We use lowercase let-
ters to denote scalars and subscripts to denote the elements,
e.g., xi is the i-th element of X . Capital calligraphic letters
represent distributions. In specific, we denote normal distri-
bution, matrix normal distribution, Gamma distribution with
rate parameter as N ,MN ,Γ, respectively. Notation ⊗ de-
notes Kronecker product and ∗ denotes Hadamard product.

2.2 Tensor Ring Format

Given an order-D tensor X ∈ R
I1×I2×···×ID , the TR format

is
X =≪ G(1), . . . ,G(D) ≫,

where G(d) ∈ R
Rd×Id×Rd+1 , ∀d = 1, . . . , D are core tensors

and RD+1 = R1. Each element of the full tensor X can be
expressed as matrix product of the core tensors, namly,

xi = tr(G(1)[id] . . .G
(D)[iD]),

where G(d)[id] ∈ R
Rd×Rd+1 are lateral slices of the core ten-

sors. Hence, TR is also referred to as matrix product state
(MPS) with periodic boundary conditions, in physics com-
munity [Perez-Garcia et al., 2007].

The left subchain G<d ∈ R
R1×

∏d−1
j=1 Ij×Rd of TR is de-

fined by tensor contraction among a subsequence of core ten-
sors, whose lateral slices are defined as

G<d[i1 . . . id−1] =
d−1
∏

j=1

G(j)[ij ].

Similarly, we denote the right subchain G>d ∈

R
Rd+1×

∏D
j=d+1 Ij×R1 and G 6=d ∈ R

Rd+1×
∏D

j=1,j 6=d
Ij×Rd .

For more details about the TR format, we refer to [Zhao et
al., 2016].

2.3 Multi-way Shrinkage Prior

Shrinkage priors are widely used to induce sparse factors in
Bayesian learning. Popular sparse inducing priors include the
automatic relevance determination (ARD) [Tipping, 2001],
the horseshoe [Carvalho et al., 2010] and so on. These

traditional shrinkage priors are designed for vector factors.
However, in the TR format, factors admit matrix form, i.e.,

G(d)[id]. Hence, we extend the ARD prior to multi-way sce-
nario.

Firstly, we introduce the matrix normal distribution.

Definition 1. For a matrix X of shape n× p, the matrix nor-
mal distribution is denoted as X ∼ MN (M ,U ,V ). And
the PDF is

p(X|M ,U ,V )

=
exp(− 1

2 tr(V
−1(X −M)⊺U−1(X −M)))

(2π)np/2|V |n/2|U |p/2
.

If X ∼ MN (M ,U ,V ), we have vec(X) ∼
N (vec(M),V ⊗ U). Hence, covariance matrix V and U
control the variance of columns and rows, respectively. To
apply the ARD prior to matrix form, we assume U and V are
diagonal and the elements follow Gamma distribution, namly,

U = diag(u), ui ∼ Γ(au0 , b
u
0 ),

V = diag(v), vj ∼ Γ(av0, b
v
0),

for i = 1, . . . , n, j = 1, . . . , p.

3 Bayesian Tensor Ring Decomposition

In this section, we introduce the basic setting of the Bayesian
tensor ring decomposition (BTRD) model.

Suppose we have an order-D tensor X ∈ R
I1×···×ID and

partially observed tensor Y , corrupted by noise tensor W ,
namely,

YΩ = XΩ +WΩ,

where Ω denotes observed indexes. To tackle internal rela-
tionships, we assume that the underlying tensor admits TR
format,

X =≪ G(1), . . . ,G(D) ≫ .

Firstly, to explore the Bayesian framework for tensor ring,
we assume the conditional distribution of the observations is
Gaussian, namely,

p(YΩ|{G
(i)}i, τ) =

I1
∏

i1=1

· · ·
ID
∏

iD=1

N (yi|tr(G
(1)[i1] · · ·G

(D)[iD]), τ−1)oi ,

where oi is the i-th element of the mask tensor O. The mask
tensor O has elements of 1 if observed, and 0 otherwise. If
oi = 0, the corresponding term has no influence on the con-
ditional distribution.

Then we apply matrix normal distribution prior on the
latent factors, in order to induce sparsity in the TR-ranks,
namely,

p(G(d)[id]|(U
(d))−1, (U (d+1))−1) =

MN (0, (U (d))−1, (U (d+1))−1),
(1)

where U (d) = diag(u(d)) and U (D+1) = U (1).



According to the ARD prior introduced in Sec. 2.3, we
adopt the following prior on the factor variance

u
(d)
i ∼ Γ(a0, b0),

for i = 1, . . . , Rd. Finally, we suppose τ follows Gamma dis-
tribution, i.e., τ ∼ Γ(c0, d0). Notice that all the distributions
in our model are conjugate exponential families. Hence it is
convenient for us to establish effective inference algorithms.

We summarize the BTRD model as follows

YΩ|{G
(i)}i, τ ∼

I1
∏

i1=1

· · ·
ID
∏

iD=1

N (yi|tr(G
(1)[i1] · · ·G

(D)[iD]), τ−1)Oi ,

G(d)[id]|U
(d),U (d+1) ∼ MN (0,U (d),U (d+1)),

u
(d)
i ∼ Γ(a0, b0),

τ ∼ Γ(c0, d0),

for d = 1, . . . , D.

4 Approximate the Posterior

The largest challenge for Bayesian models is to compute
the posterior. In most of the models, the posteriors are in-
tractable. To this end, many approximation inference algo-
rithms have been proposed, e.g., approximate message pass-
ing (AMP), Markov chain Monte Carlo (MCMC) and vari-
ational inference (VI). Benefiting from the conjugacy of our
model, we can develop inference algorithms with high effi-
ciency, based on MCMC and VI.

Here, we denote the whole parameters set as Θ =

{G(1), . . . ,G(D),u(1), . . . ,u(D), τ}. Then the joint distribu-
tion is

p(YΩ,Θ) = p(YΩ|{G
(d)}Dd=1, τ

−1) ·
D
∏

d=1

p(u(d)) · p(τ)

·
D
∏

d=1

Id
∏

id=1

p(G(d)[id]|(U
(d))−1, (U (d+1))−1).

(2)

4.1 Gibbs Sampler

In this section, we briefly introduce the Gibbs sampler to es-
timate the posterior.

Gibbs sampler is one of the most popular MCMC meth-
ods, due to its simplicity. It is designed for scenarios where
the posterior is intractable but the conditional posteriors have
simple forms. The basic idea is to sample the parameters from
its conditional posteriors circularly, which is analogous to the
alternating least square algorithms. For the BTRD model, the
conditional posteriors are summarized as follows.

Sample the factor variance {u(d)}Dd=1. The conditional
distribution is

log p(u(d)|−) ∝ log p(YΩ,Θ)

=

Rd
∏

rd=1

Γ(adrd , b
d
rd
),

where

adrd =a0 +
IdRd+1 + Id−1Rd−1

2
,

bdrd =b0 +
1

2
u(d−1),⊺

Id−1
∑

i=1

g
(d−1)
·rd [i] ∗ g

(d−1)
·rd [i]

+
1

2
u(d+1),⊺

Id
∑

i=1

g
(d)
rd·[i] ∗ g

(d)
rd·[i].

Sample the core tensors {G(d)}Dd=1. The conditional dis-
tribution is

log p(G(d)[id]|−)

∝ log p(YΩ,Θ),

=MN (vec(G(d)[id])|vec(G̃)(d)[id], Ṽ
(d)

[id]),

where

vec(G̃)(d)[id] =τ Ṽ
(d)

[id]
∑

i−d∈Ωd[id]

yi−d
vec((G 6=d[i−d])

⊺),

(Ṽ
(d)

[id])
−1 =τ

∑

i−d∈Ωd[id]

vec((G 6=d[i−d])
⊺)vec((G 6=d[i−d])

⊺)⊺

+U (d+1) ⊗U (d),

where Ωd[id] is the set of all observed index [. . . , id, . . . ].

Sample the noise level τ . The posterior follows p(τ |−) =
Γ(cτ , dτ ), where cτ = c0 + 1

2

∑

i∈Ω oi and dτ = d0 +
1
2

∑

i∈Ω(yi − ŷi)
2.

4.2 Variational Inference

In real applications, MCMC algorithms usually take long
time to converge and is computationally infeasible. VI pro-
vides another solution for the posterior and has much faster
convergence rate. In this subsection, we study the VI proce-
dure for the BTRD model. The VI uses a family of variational
distributions to approximate the true posterior, denoted as
q(Θ). Then the objective is to find the optimal variational dis-
tribution q∗(Θ), which has the minimum Kullback–Leibler
divergence with the true posterior. However, the variational
distribution is still very hard to optimize. The solution is the
elegant mean-field approximation. Adopting the mean-field
approximation, the variational distribution can be factorized
as follows,

q(Θ) = q(τ)

D
∏

d=1

q(u(d))

D
∏

d=1

ID
∏

id=1

q(G(d)[id]).

According to the coordinate ascent variational inference
(CAVI) algorithm [Bishop, 2006], the optimal solution is

ln q∗j (Θj) = 〈ln p(YΩ,Θ)〉q(Θ\Θj) + const, (3)

where const is some normalization constant and 〈·〉q(Θ\Θj)

represents expectation w.r.t. distribution q(Θ\Θj). Due to
the conjugacy of our model, all the variational distributions
are tractable and we summarize as follows.



Variational posterior of the core tensors {G(d)}Dd=1. To
inference the core tensor, we circlically inference the factors,
namely,

ln q∗(G(d)[id]) = 〈ln p(YΩ, {G
(d)}, {U (d)}, τ)〉Θ\G(d)[id].

Hence, the posterior is multivariate normal distribution,
namely,

q(G(d)[id]) ∼ N (vec(G(d)[id])|vec(G̃
d
[id]), Ṽ

(d)
[id]), (4)

where

vec(G̃
(d)

[id]) =

〈τ〉Ṽ
(d)

[id]

〈

∑

i−d∈Ωd[id]

yi−d
vec((G 6=d[i−d])

⊺)

〉

,

(Ṽ
(d)

[id])
−1 =

〈τ〉

〈

∑

i−d∈Ω

vec((G 6=d[i−d])
⊺)vec((G 6=d[i−d])

⊺)⊺

〉

+ 〈U (d+1) ⊗U (d)〉.

Without inducing ambiguities, we dismiss the subscripts of
the expectations terms 〈·〉 for simplicity.

Thanks for the independence assumption in mean-field ap-
proximation, most of the expectation terms above are easy to
compute. The most difficult part is to compute the expecta-
tion of the outer-product of the subchains. it involves square

terms which are influenced by the variance Ṽ .

Consider one core tensor G(d) which follows distribution
given in Eq. (4). We denote its outer product as

A(d) = G(d) ◦ G(d) ∈ R
Id×Rd×R(d+1)×Rd×R(d+1) ,

for d = 1, . . . , D, where each element of A(d) is defined as

a
(d)
idlkmn = g

(d)
lk [id] · g

(d)
mn[id],

for id = 1, . . . , Id, l,m = 1, . . . , Rd and k, n =
1, . . . , Rd+1. Moreover, we reshape the covariance matrices
into tensors, like,

Ṽ
(d)

[id] = reshape(Ṽ
(d)

[id], Rd, Rd+1, Rd, Rd+1).

Then we can compute the expectation of A(d) as

〈A(d)[id]〉 = G̃
(d)

[id] ◦ G̃
(d)

[id] + Ṽ
(d)

[id], (5)

where G̃
(d)

[id] is defined in Eq. (4).
Now we denote

B(d)[i−d] = vec((G 6=d[i−d])
⊺)vec((G 6=d[i−d])

⊺)⊺,

and its tensorized form

B(d)[i−d] = reshape(B(d)[i−d], Rd, Rd+1, Rd, Rd+1).

We have the following relationship

B(d)[i−d] =(G 6=d[i−d])
⊺ ◦ (G 6=d[i−d]])

⊺.

Using the Einstein’s summation notation, we can simplify
the expectation as

〈B
(d)
i−dlkmn〉

=〈A
(d−1)
id−1rd−1lr′d−1m

〉〈A
(d−2)
id−2rd−2rd−1r′d−2r

′
d−1

〉 · · ·

〈A
(1)
i1r1r2r′1r

′
2
〉〈A

(D)
iDrDr1r′Dr′1

〉 · · · 〈A
(d+1)
id+1krd+2nr′d+2

〉,

(6)

where the same subscripts represent the contraction indexes.
The expectation of A can be computed according to Eq. (5).

To illustrate Eq. (6), we take an order-5 tensor as an ex-
ample. Using the tensor network diagrams [Cichocki et al.,
2016], when d = 5, Eq. (6) can be represented as

〈B(5)〉 =

(1) (2)

(3)(4)

r′2

r2

r′3 r3

r4

r′4

r′1

r1

r5

r′5

I1 I2

I3I4

. (7)

Variational posterior of the factor variance {u(d)}Dd=1.

The variational posterior of u(d) is

ln q(u(d)) =〈ln p(YΩ, {G
(d)}, {U (d)}, τ)〉Θ\u(d) + const,

=

Rd
∏

rd=1

Γ(u(d)
rd

|adrd , b
d
rd
),

where

adrd = a0 +
IdRd+1 + Id−1Rd−1

2
,

bdrd = b0 +
1

2
〈(u(d−1))⊺〉

〈

Id−1
∑

i=1

g
(d−1)
·rd [i] ∗ g

(d−1)
·rd [i]

〉

+
1

2
〈(u(d+1))⊺〉

〈

Id
∑

i=1

g
(d)
rd·[i] ∗ g

(d)
rd·[i]

〉

.

The expectations can be computed as follow
〈

Id−1
∑

i=1

g
(d−1)
·rd [i] ∗ g

(d−1)
·rd [i]

〉

=

Id−1
∑

i=1

[

g̃(d−1)
·rd

[i] ∗ g̃(d−1)
·rd

[i] + diag(Ṽ
(d)

rd·rd·
[id])

]

.

Variational posterior of the noise level τ . Similarly, the
variational posterior of the noise level τ is

ln q(τ) =〈ln p(YΩ, {G
(d)}, {U (d)}, τ)〉q(Θ\τ) + const

=Γ(τ |cτ , dτ ),

where

cτ = c0 +
1

2

∑

i∈Ω

Oi,

dτ = d0 +
1

2

〈

||O ∗ (Y− ≪ G(1), . . . ,G(D) ≫)||2F

〉

.



Again the difficulty is to compute the expectation term. We
have

〈||O ∗ (Y− ≪ G(1), . . . ,G(D) ≫)||2F 〉

=||YΩ||
2
F − 2vec(YΩ)

T vec(≪ G̃
(1)

, . . . , G̃
(D)

≫Ω)

+ 〈|| ≪ G(1), . . . ,G(D) ≫Ω ||2F 〉.

Similar with the inference of core tensor, we use Einstein’s
notation to simplify the equations. For each element ŷi =

tr(G(1)[i1] · · ·G
(D)[iD]), we have

〈ŷi〉 = 〈A
(1)
r1r2r′1r

′
2
[i1]〉 · · · 〈A

(D)
rDr1r′Dr′1

[iD]〉, (8)

where the expectation of A is again computed through Eq.
(5).

4.3 Some Details

Hyperparameters. For most of applications, it is likely
that we do not have any information about the data. Hence,
we adopt the non-informative prior. Specifically, we set all
hyperparameters a0, b0, c0, d0 as a very small number, e.g.,
1e−6, to induce as less influence on the posterior as possible.

Initialization. In TN-based model, a good initialization
point usually results in much faster convergence [Stouden-
mire and Schwab, 2016]. For the core tensors, we use the ten-
sor ring approximation (TRA) initialization method described
in [Wang et al., 2017], which factorizes the observed tensor
as initializations. For u and τ , we simply set them as 1.

Pruning Factors. One main advantage of our model is to
inference the true rank of underlying signals. The basic idea
is setting a relatively large initialization rank. Due to the spar-
sity inducing priors, many factors becomes zero during the
inference procedure and can be discarded. However, large
ranks may cause heavy computational burden. In practice,
we truncate a factor if its Frobenius norm is smaller than a
small constant, e.g., 1e−3. We also observed that it’s possi-
ble to set a much smaller truncation level and the results are
usually similar.

5 Experiments

In this section, we give the experimental results, including
simulation study and image inpainting experiments. For the
simulation study, we generate synthetic data and test the abil-
ity of our model to infer true underlying structures. For the
image inpainting part, we compare the performance of our
model with several tensor completion models. We test both
the Gibbs sampler and VI algorithms, denoted as BTRD-GS
and BTRD-VI respectively. All of our experiments are per-
formed on a GNU/Linux workstation with Intel Xeon E5-
2690 3.50GHz CPU and 64GB memory.

5.1 Simulation Study

For the simulation study, we artificially generate synthetic
data and test the efficiency of the BTRD model.

To illustrate our model, we conduct experiments on an
order-4 tensor of shape 10 × 10 × 10 × 10 with TR-
rank [3, 3, 3, 3]. To be specific, we independently generate

4 core tensors of shape 3 × 10 × 3 from standard Gaus-
sian distribution, and then compute the true signal X =≪
G(1), . . . ,G(4) ≫. Then we add i.i.d. Gaussian noise W on
the true signal to get the observed signal, i.e., Y = X +W .
To test the robustness of our model under different circum-
stances, we adopt different missing rate ranging from 0.1 to
0.7 and different signal-to-noise (SNR) levels ranging from

-5 to 30. The SNR is defined as SNR = ||X ||F /
√
∏

d Idσ,

where σ2 is the noise variance. We repeat the experiments 20
times and take the average result.

For the synthetic data, we mainly test the ability of our
model to estimate the true underlying TR-rank and the noise
variance. We set the initialization TR-rank as [20, 20, 20, 20]
and calculate the relative error of the true value and the esti-
mated value. The rank estimation results are shown in Fig. 1
and the noise variance estimation results are shown in Fig. 2.
These experiments manifest that the BTRD model can effec-
tively inference the underlying data structures.
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Figure 1: Rank estimation error.
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Figure 2: Noise variance estimation error.

5.2 Image Inpainting

In the image inpainting experiments, we compare our pro-
posed model with some state-of-the-art tensor completion al-
gorithms, including BCPF [Zhao et al., 2015], TRALS [Wang
et al., 2017], TTWOPT [Yuan et al., 2019b], TRLRF [Yuan et
al., 2019a]. The BCPF model also uses Bayesian frame work
and requires no hyperparameters. However, for the rest of
models, we have to carefully tune the hyperparameters, e.g.,
the TT/TR-ranks. Here we compute those models under sev-
eral groups of TT/TR-ranks and select the best performance.
However, it should be noted that this is not realistic in many
applications where the true signals are unknown.

For our model, we set the initialization TR-rank as
[20, 20, 20]. For BTRD-GS algorithm, we set 1000 iterations
with 200 burn-in. We illustrate the convergence process for



Lena image with missing rate 0.9 in Fig. 3. It shows that the
VI algorithm converges much faster than Gibbs sampler.
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Figure 3: Convergence process for Lena image with missing rate
0.9.

The evaluate the performance, we adopt the relative stan-
dard error (RSE) and peak signal-to-noise ratio (PSNR), de-

fined as follows, RSE = ||X − X̂ ||F /||X ||F and PSNR =

10 log10(numel(X ) ‖X‖2∞ /||X̂ −X ||2F ), where numel(X )
represents the number of elements in X and ||X ||∞ is the
maximum element of X .

We choose 8 pictures to test the performance, shown in Fig.
4. For the completion problem, we randomly generate masks
of missing rate 0.5, 0.7 and 0.9.

Figure 4: Original benchmark images.

Fig. 5 illustrates the completion results of the Lena image
under different missing rate. The full quantitative results are
show in Tab. 1. It shows that our proposed model outperforms
others when the missing rate becomes high. However, when
the missing rate is 0.5, it results that the BTRD-VI performs
better than BTRD-GS. This may due to the slow convergence
rate of Gibbs sampler and we do not set enough iterations.

6 Discussions

In this paper, we study the Bayesian tensor ring decompo-
sition and its application in tensor completion. By adopting
the sparsity inducing prior, our model can automatically in-
fer the underlying true structures. We develop both Gibbs
sampler and VI algorithms to approximate the true posterior.
Experiments shows that the proposed VI algorithm has very
fast convergence. To test the effectiveness of our model, we
conduct both synthetic data experiments and image inpaint-
ing experiments. The results confirm the advantages of our

model, in inference of the true signals and the completion
performance.
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